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Abstract The non-cutoff Boltzmann equation can be simulated using the DSMC method,
by a truncation of the collision term. However, even for computing stationary solutions this
may be very time consuming, in particular in situations far from equilibrium. By adding an
appropriate diffusion, to the DSMC-method, the rate of convergence when the truncation
is removed, may be greatly improved. We illustrate the technique on a toy model, the Kac
equation, as well as on the full Boltzmann equation in a special case.

Keywords Kac equation · Direct simulation Monte Carlo · Diffusion approximation ·
Thermostat · Non-equilibrium stationary state · Markov jump process

The Boltzmann equation describes the evolution of the phase space density of a gas. It is
a nonlinear equation in many dimensions, which makes it difficult to treat by e.g. finite
difference methods. The classical way of solving the Boltzmann equation numerically is by
means of Monte Carlo simulation. The method was first described by Bird (see the book [4]),
but since then many variations on the theme have been published [2, 23, 25, 29].

Very briefly, the DSMC-method can be described as follows: The gas is represented by
a finite (although sometimes rather large) number of particles. The time evolution is then
carried out by alternating a transport step, in which the particles move independently with
their own velocity, and a collision step. The spatial domain of calculation is divided into cells
which should be large enough that it typically contains a not too small number of particles,
but still small enough to take into account the spatial gradients in the problem.

The collision step is then carried out in each cell separately as a jump process in R
3n,

where n is the number of particles, and the jumps occur as the velocity change in clas-
sical collisions between randomly chosen pairs of particles. The collisions conserve en-
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ergy and momentum, so the jump process actually takes place on {(v1, . . . , vn) ∈ R
3n |∑

vk = u ∈ R
3,

∑
v2

k = W }.
The simulation can be understood as a sampling of the solution of a Poisson driven

stochastic differential equation. In the original DSMC methods, the rate of the underlying
Poisson process was always taken to be finite, but there are at least two reasons for con-
sidering infinite (or very large) collision rates. The first one occurs when the density of the
gas is very large in a cell, i.e. when n is very large. One way of handling that situation is
to sample the velocity distribution at the end of a collision step as a suitable mixture of a
distribution as the one that results from a moderate number of collisions and the equilibrium
distribution, which is a Maxwellian [25–27].

The other case derives from the fact that many realistic collision models correspond
to long-range potentials, which effectively gives rise to an infinite collision rate. The vast
majority of collisions only change the velocities marginally, and so the rate of change of
momentum due to collisions is finite.

To carry out a Monte Carlo simulation in this situation, one may truncate the jump
process so as to obtain a finite collision rate. It has been proven [10, 13, 14] that truncated
Monte Carlo methods converge as the truncation is lifted, and this has also been illustrated
by numerical experiments. However, we have found that in certain cases, in particular when
the stationary solutions are far from equilibrium, the jump rate must be truncated at a very
high (and so, costly) level to get an acceptable accuracy.

We propose here a method to replace the small jumps by an appropriate diffusion, and
show by example that this gives an important improvement of the accuracy compared to just
ignoring the small jumps. This has been inspired by the works [1, 30], where this technique
is proposed for simulating Lévy processes in R

n.
There are, of course, other methods than the Monte Carlo methods, for solving the Boltz-

mann equation, and in particular there are fast methods based on the Fourier transform, that
have been used successfully for the non-cutoff situation [11, 12, 22].

This study was motivated by the difficulty of obtaining accurate estimations of the non-
equilibrium stationary state for a non-cutoff collision kernel, and of the theoretical results
in [5], where the one-dimensional Kac equation with a Gaussian thermostat was studied.
Also in this paper, the main part is devoted to the Kac equation. The diffusion term is then
a Brownian motion on the sphere Sn−1, and the approximation is very straight forward.
We describe the method in some detail for this case. However, from a conceptual point of
view, the method is not restricted to one-dimensional models, and we have also carried out
numerical calculations for the Boltzmann equation with a thermostat and Maxwellian non-
cutoff collisions. In that case, the diffusion model is more complicated (it is essentially the
Balescu-Prigogine model for Maxwellian molecules [18, 33]), and the actual calculation is
carried out somewhat differently, as described in Sect. 3.

In [34, 36], it is shown that, contrary to the Kac equation, the Boltzmann equation with a
thermostatted force field only has trivial stationary states, and hence it is only interesting to
compare the evolution of the solutions. At the end of the paper, we present some numerical
results for this model.

We note, finally, that for non-Maxwellian molecules the situation is rather different, and
then it may in some cases be more appropriate to go the other way around and to approximate
the diffusion process by a non-cutoff collision process [7].

1 The Kac Equation, the Master Equation and Monte Carlo Simulations

We consider a system of n particles that are entirely characterized by their one-dimensional
velocities vi , i = 1, . . . , n. These velocities undergo random jumps,
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(v1, . . . , vj , . . . , vk, . . . , vn)

�→ Rj,k,θ (v1, . . . , vj , . . . , vk, . . . , vn)

= (v1, . . . , vj cos θ − vk sin θ, . . . , vj sin θ + vk cos θ, . . . , vn),

1 ≤ j, k ≤ n, θ ∈] − π,π ]. (1)

These jumps occur independently with a rate proportional to

n−1b(θ)dθ. (2)

This is the Kac model of a dilute gas [17]. In the original paper, b(θ) = (2π)−1, i.e. all
rotation angles θ are equally probable.

We note that the jumps are rigid rotations in a plane spanned by a pair of velocities,
and hence it is clear that the kinetic energy, W = 1

2

∑n

j=1 v2
j is preserved, and therefore this

describes a jump process with values in Sn−1(
√

2W). It is convenient to choose 2W = n.
Another important thing to notice is the factor n−1 in (2); this implies that for the rate

of jumps that involve a particular velocity, e.g. v1, asymptotically does not depend on the
number of velocities, n. However, in many physically realistic cases, the rate of jumps de-
pend on the rotation angle, approximately as |θ |−(1+α), where α ∈ [0,2[. This implies that
the total jump rate for the vector v = (v1, . . . , vj , . . . , vk, . . . , vn) is infinite. We speak about
non-cutoff models as opposed to the cutoff models where b is replaced by some function b̃

such that
∫ π

−π
b̃(θ) dθ < ∞.

This jump process may equally well be defined by the master equation, which de-
scribes the evolution of a phase space density under the process. We let �(t, ·) ∈
C([0,∞[,L1(Sn−1(

√
n))), and assume that �(0, ·) is a non negative density on Sn−1(

√
n).

Then � satisfies the equation

∂t�
n(t,v) = 2

n

∑

1≤j<k≤n

∫ π

−π

(�n(t,Rj,k,−θv) − �n(t,v))b(θ) dθ, (3)

which is known as Kac’s master equation. The superscript n denotes the number of variables
in the model, and this corresponds to the number of particles in a cell. Kac proved that if one
considers the family of master equations for �n, n = 0, . . . ,∞, with initial data �n

0 that is
symmetric with respect to permutation of the variables, and such that the marginal densities
�n

k,0(v, . . . , vk) satisfy

lim
n→∞�n

k,0(v1, . . . , vk) = lim
n→∞

∏

j=1,...,k

�n
1,0(vj ). (4)

Then also the time evolved density �n(t,v) factories into a product of one-particle marginals
f (t, v) ≡ �n

1 (t, v), and that f (t, v) satisfies the so-called Kac equation

∂tf = Q(f,f ), (5)

where the collision operator Q

Q(g,g)(v) =
∫

R

∫ π

−π

(g(v′)g(v′
∗) − g(v)g(v∗))b(θ) dθ dv∗, (6)
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and where

(v′, v′
∗) = (v cos θ − v∗ sin θ, v sin θ + v∗ cos θ). (7)

Compared to the real Boltzmann equation, the Kac equation is very easy to analyze math-
ematically, and we refer to [9, 21] for some of the basic results concerning existence and
uniqueness of solutions, trend to equilibrium, etc.

From a numerical point of view, the connection between the jump process described
in (1) and (2) and the Kac equation, is that one may regard

1

n

n∑

j=1

δvj (t) (8)

as an approximation of the probability density f (t, v), and it has been proven for many
different cases that (8) does indeed converge to f (t, v) (see [3, 28]).

The solutions of (5) converge to equilibrium exponentially as t increases to infinity, the
equilibrium solution being a Gaussian function with mean zero. It is of interest to study
situations where the stationary solution is not an equilibrium state. This is the case e.g. in
kinetic models for dissipative systems (see e.g. [6, 8, 15]).

Another example comes from molecular dynamics and the introduction of thermostats,
and which is used here as a test case for the Monte Carlo method with Brownian approxi-
mation.

The basic model is the one described in the beginning of this section, with a vec-
tor v ∈ R

n, that jumps according to (1). The difference in the thermostat model is that the
velocity field is accelerated by a constant force field E = E(1, . . . ,1), which is projected on
the tangent plane to the sphere Sn−1(

√
n). This means that between jumps, the a velocity

component vj satisfies

d

dt
vj (t) = E

(

1 −
∑

vk
∑

v2
k

vj

)

. (9)

The physical interpretation is that each particle is accelerated by the same, constant, force
field of strength E, but that a force field depending on the whole system of particles keeps
the total kinetic energy fixed. The model is described more in details in [34, 36], where
also the corresponding Kac equation is derived and analyzed. This Kac equation takes the
form

∂

∂t
f + E

∂

∂v
((1 − ζ(t)v)f ) = Q(f,f ), (10)

where

ζ(t) =
∫

R

vf (v, t) dv. (11)

The collision operator, Q is defined as before, in (6). The stationary states to this equation
are far from Gaussian. One can show that for an integrable kernel,

∫ π

−π
b(θ) dθ , the stationary

state becomes singular for sufficiently large values of E (see [35]), whereas in the non-cutoff
case, the stationary state is C∞ (see [5]). The latter case is really the motivation for the work
presented in this paper, because it proved very difficult to get accurate numerical results
using a truncated kernel.
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2 Brownian Approximation

The evolution of the n-particle system (including a thermostatted force field of strength E)
can be described by a stochastic differential equation driven by a Poisson random measure:

v(t) = v(0) + E

∫ t

0

(

e − e · v(s)

|v(s)|2 v(s)

)

ds

+
∑

1≤j<k≤n

∫ t

0

∫ π

−π

Aj,k(θj,k)v(s−)N(ds, dθj,k). (12)

Here Aj,k(θ) is the n × n-matrix

Aj,k(θ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0 · · · 0 · · · 0 0
0 1 · · · 0 · · · 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · cos θ − 1 · · · − sin θ · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · sin θ · · · cos θ − 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 · · · 0 · · · 1 0
0 0 · · · 0 · · · 0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (13)

e = (1,1, . . . ,1) ∈ R
n, and N(ds, dθ) is a Poisson random measure with intensity measure

n−1b(θ) dθ dt . In the non-cutoff case,

b(θ) ∼ |θ |−(1+α) (14)

near θ = 0, and with 0 < α < 2, this implies that the total jump rate is infinite.
The Brownian approximation consists in replacing N(ds, dθ) in (12) by a truncated mea-

sure Ñε(ds, dθ) with intensity measure n−1b̃ε(θ) dθ dt , where b̃ is defined by

b̃ε(θ) = min(b(θ), b(ε)), (15)

and adding a Brownian term to compensate for the truncated part.
The explicit form of a stochastic differential equation whose solution is a Brownian

motion on an n-dimensional sphere Sn−1(r) can be found e.g. in [31], or in Øksendal’s
book [24]:

X(t) = X(0) +
∫ t

0
λrW (X(s)) ds +

∫ t

0

√
λσ(X(s)) dW(s), (16)

where {W(t)} is a standard Wiener process in R
n with mean zero and whose covariance is

the identity matrix. The matrix σ projects the dW onto the tangent plane to Sn−1(
√

n) at X,
its elements being given by

σj,k(x) = δj,k − xjxk

|x|2 . (17)
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The drift term rW is

rW (x) = −n − 1

2

x

|x|2 . (18)

The diffusion rate μ is computed so as to match the second moment of the truncated part of
the jump measure:

μ = με = 2n

n − 1

1

2

∫ ε

−ε

(b(θ) − b(ε)) θ2 dθ. (19)

When b(θ) = |θ |−(1+α), we find

με = 2n

n − 1

1 + α

3(2 − α)
ε2−α. (20)

Details of this calculation will be found in [32], where also the rate of convergence is
analysed. One result is that while the generators of the processes corresponding to (14)
with a truncated kernel converges with rate ε2−α , the convergence rate is ε3−α when the
Brownian term is added. When α is close to 2, the improvement is significant.

Adding the force term, like in (12), gives

v(t) = v(0) +
∫ t

0
(rT h(v(s)) + rW (v(s))) ds +

∫ t

0
σ(v(s)) dW(s)

+
∑

1≤j<k≤N

∫ t

0

∫ π

−π

Aj,k(θj,k)v(s−)Nε(ds, dθj,k), (21)

where rT h(v(t)) = e − e·v(s)

|v(s)|2 v(t) = �(v)e, � being the matrix with elements �j,k =
δj,k − vj (t)vk(t)/|v|2, and where Nε is a Poisson random measure with intensity measure
n−1b̃ε(θ) dθ dt .

3 The 3n Dimensional Master Equation and the Boltzmann Equation

The master equation that corresponds to the full Boltzmann equation and with an added
thermostatted force term is [36]

∂t�
n(t,v) +

n∑

i=1

∂

∂vi

([F − F · j vi]�n(t,v))

= 2

n

∑

1≤j<k≤n

∫

S2
(�n(t,Rj,k,ωv) − �n(t,v))b(θ) dω, (22)

where in this case, v ∈ R
3n, and where Rj,k,ω is an operator that models the collision of two

particles,

(vj , vk) �→
(

vj + vk

2
+ |vj − vk|

2
ω,

vj + vk

2
− |vj − vk|

2
ω

)

.
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In b(θ), θ = arccos(ω · vj −vk

|vj −vk | ). To keep the notation similar to the one-dimensional case,

we let v = (v1, . . . , vn), where vj ∈ R
3, j = 1, . . . , n. The non-cutoff case again corresponds

to allowing
∫

S2 b(θ) dω to diverge. The force field is F = (E,0,0), and j = 1
n

∑n

j=1 vj . At

the level of the master equation, the Brownian approximation corresponds to truncating the
non-cutoff jump rate, and replacing the truncated part by a suitable diffusion term. For the
Kac equation, the diffusion is just the one given by the Laplace-Beltrami operator on the
sphere Sn−1, but here it is rather the Balescu-Prigogine operator for Maxwellian interactions
(see [18, 33]),

μ

n

∑

j �=k

(∂vj
− ∂vk

)|vj − vk|2P⊥
vj −vk

(∂vj
− ∂vk

), (23)

where P⊥
z is the 3 × 3-matrix I − zztr

|z|2 , and μ is a constant depending on the level of trunca-
tion.

Given this expression, one can write a stochastic equation much like (21). However, from
a computational point of view, it does not seem to be efficient, because of the effort needed
to compute σ dW . An alternative, that gives good results at much lower computational cost,
is to replace (23) by

μ

n

∑

j �=k

∂vj
|vj − vk|2P⊥

vj −vk
∂vj

, (24)

which corresponds to adding a Brownian motion Rj dWj ∈ R
3 to each velocity, where

Rtr
j Rj = μ

∑
j �=k(|vj − vk|2I − (vj − vk)(vj − vk)

tr). The matrices Rj can be expressed in
terms of moments and vj , and hence the computational cost is proportional to the number of
particles. The increments (R1 dW1, . . . ,Rn dWn) still need to be projected onto the tangent
space of the manifold of constant energy and momentum, but that is an operation that can
be carried out in time proportional to the number of particles. Some numerical results are
given in the following section.

4 Numerical Experiments

The numerical experiments have been carried out in the most direct way, with no large effort
to make the code efficient. The large jumps have been simulated by computing exponentially
distributed time intervals with rate proportional to n

∫ π

−π
b̃(θ)dθ . At the end of such an inter-

val, a random pair (j, k) is chosen and the jump is effectuated by rotating the vector (vj , vk)

by a random angle θ distributed according to b̃(θ)/
∫ π

−π
b̃(θ)dθ .

In the intervals between the large jumps, we solve (21) using a simple explicit Euler
method with a step size that depends on με . The step size is taken to be a given fraction of
the typical rate for the truncated jump process. We have not made a rigorous analysis that
would help in choosing the step size, rather we have numerically tested that the choice gives
relevant answers.

We have computed uniformly distributed pseudo-random variables using the routine
DLARAN from the LAPACK package [19] and to compute normally distributed random
variables, we have used the ziggurat method of Marsaglia and Tsang [20].
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Fig. 1 Simulation results using different values of truncation: the velocity distribution, and an enlargement

As initial data, we have taken 1
2 (δv=1 + δv=−1).

We have no exact solutions to compare the results with. However, taking the Fourier
transform of the time independent Kac equation, i.e. (10) considered without t , gives
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Fig. 2 Simulation results using different values of truncation: time evolution of some of the moments

equation

f̂ ′(ξ) + i

γ ξ
f̂ (ξ) = 1

Eγ ξ

∫ π

−π

(f̂ (ξ cos θ)f̂ (ξ sin θ) − f̂ (0)f̂ (ξ))b(θ) dθ, (25)

where γ is the stationary current, which can be explicitly computed. Equation (25) can
be solved accurately numerically using a finite difference method, combined with the
built-in ODE-solvers of Matlab™. Numerical results obtained in this way were pre-
sented in [5], where also a detailed mathematical analysis of the non-cutoff Kac equa-
tion with a thermostat can be found. Although no rigorous error analysis has been car-
ried out, we consider this finite-difference solution to be an accurate solution to the sta-
tionary problem: a fine discretization was used, and the method was found to converge
well.

Another test for the accuracy is to compare the evolution of moments. Also here we
do not have any exact results to compare with, but as with other Boltzmann like equa-
tions of Maxwell type (i.e. models where the collision rate does not depend on the relative
velocity of the colliding particles), one can write a closed system of ordinary differential
equations for the first moments mk = ∫

f (v, t)vk dv, and this system can then be solved
accurately with a numerical ODE-solver. We have used Matlab™ to solve the following
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Fig. 3 Simulation results using different values of truncation for a stronger singularity: the velocity distrib-
ution, and the evolution of moments. Here the effect of the Brownian correction is more evident
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Fig. 4 Simulation results using different values of the number of particles. The simulation is repeated more
times to get comparable results. As few as 50 particles gives a rather good agreement, but as few as five or
even three particles are clearly not enough
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Fig. 5 The evolution between jumps is computed using a simple forward Euler method. The results here
show that the time step is not critical
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Fig. 6 Simulation of the Boltzmann equation: the distribution of the first velocity component vx , i.e. an
approximation of

∫
R2 f (v, t) dvy dvz at t = 0.06

system:

ṁk = Ekmk−1 − Ekm1mk − Akmk +
k−1∑

j=1

Bkjmk−jmj ,

Ak =
∫ π

−π

(1 − cosk θ − sink θ)b(θ) dθ,

Bkj =
(

k

j

)∫ π

−π

cosk−j θ sinj θb(θ) dθ,

mk(0) = 1

2
(1 + (−1)k). (26)

In the numerical calculations we have used b(θ) = |θ |−1−α for different values of β =
α + 1 ∈]1,3[, and different values of the force parameter E ∈ [2,5]. We have also varied n,
the number of particles, and the time step used in solving the SDE, (21).

The first series of results, presented in Figs. 1, 2 (an enlargement), and Fig. 3 (for a
stronger singularity) shows how the results depend on the level of truncation, and compares
this with the result from using a much truncated model but with a Brownian correction. The
parameters used were E = 3.0, β = 2.0, n = 2000, and ε = 0.2,0.02,0.002. The time dt

used in the Euler method for approximating the SDE was here taken to be 0.0001 × dt0,
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Fig. 7 Evolution of the moment M6,0,0 with truncation at ε = 0.5, with and without the diffusion correction.
The moments for the Boltzmann equation are given as a reference. The enlargement shows that although the
reference curve and the curve with the diffusion correction almost coincide, they are not identical

where dt0 corresponds to a displacement of order ε from the Brownian motion. This is ex-
cessively small, and we will see below that it is far from necessary to get an accurate result.
The calculation was then repeated 200 times to reduce noise. We see that ε = 0.2 together
with a Brownian approximation compares very well with a simulation using ε = 0.002 with
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Fig. 8 Evolution of the moment M4,0,0 with truncation at ε = 0.5, with and without the diffusion correction.
The moments for the Boltzmann equation are given as a reference

no approximation. The estimates in [32] give a convergence rate of ε3−β without the Brown-
ian correction, and a rate of ε4−β with the Brownian term added. Hence it is not surprising
to see that, when the singularity in the crossection b(θ) is stronger, the influence of the
truncation and of the Brownian approximation is much more important.

Figure 4 shows results for different values of n, the number of particles used in the
simulation. There are at least two reasons for using a large value of n, when simulating
kinetic equations: first, the Boltzmann equation itself assumes a limit of infinitely many
particles, and secondly, a large value of n reduces the noise when computing moments or
other functions. In this series we have taken n × number of simulated trajectories � const,
and very large in order to obtain a noiseless result. The calculations show that in fact it is
not necessary to use a very large number of particles to find a good agreement, n = 50 is
quite enough, both to get a reasonable agreement of the distribution functions and of the
evolution of moments. However, with a small number of particles, it is necessary to repeat
the calculations many times to avoid excessive noise in the result.

The last example for the Kac model, Fig. 5, shows some simulations that illustrate the
influence of the time-step in the Euler method for solving the SDE (21). The reference time
step is so large that the mean step is of the order ε, and the figure shows that both for
computing the distribution function and the evolution of moments, it is not necessary to
decrease the step size much below the reference value to get a good result.

The simulation is carried out in very much the same way for velocities in R
3, the main

difference being the in which the diffusion is added. To compute the matrices Rj , we have
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Fig. 9 Evolution of the moment M2,0,2 with truncation at ε = 0.5, with and without the diffusion correction.
The moments for the Boltzmann equation are given as a reference

used routines from the Gnu Scientific Library [16] to evaluate the square root. This is rather
time consuming, and the code spends a major part of the time doing this; still the method
is faster than just using a smaller truncation, also before any attempts have been made to
making the code efficient.

In this case we do not have an alternative method for computing the velocity distribution,
but rather we compare the velocity distribution with a calculation with very small truncation.
Because we are dealing with the case of Maxwellian interactions, there is a closed set of
equations that describe the evolution of moments for the limiting Boltzmann equation also
here.

All calculations were carried out with a constant force field F = (1,0,0), and the number
of particles was n = 500. The initial data was 1

2 (δ(1,0,0) + δ(−1,0,0)).
The first graph, Fig. 6 compares the approximations of

∫

R2
f (vx, vy, vz, t) dvy dvz,

with and without the diffusion correction, and a reference solution obtained by carrying out
a simulation with a very small truncation of the crossection.

We also compare the evolution of moments of the form

Mjx,jy ,jz (t) = 1

n

n∑

k=1

v
jx
kxv

jy
kyv

jz
kz,
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with the moments (computed as the solution of the closed ODE-system) for solutions to the
limiting Boltzmann equation,

∫

R3
f (vx, vy, vz, t)v

jx
0xv

jy

0yv
jz
0z dvx dvy dvz.

We consider the solutions to the ode’s to be exact. Hence Figs. 7, 8 and 9 show the evolution
of M6,0,0(t), M4,0,0(t), and M2,0,2(t), respectively, for a strong truncation of the collision
term ε = 0.5, with and without the diffusion correction, and compared with the moments for
the limiting Boltzmann equation.

5 Conclusions

The paper presents a method to compute accurate solutions to non-cutoff Boltzmann equa-
tions in the non-cutoff case, by approximating the small jumps by a diffusion. We have
presented numerical examples showing that it works well, and gives accurate results.

There are several open issues that merit being studied. From a numerical point of view,
of course one would have to find good means of choosing n, the level of truncation, and an
efficient method for solving (21).

Some results that aim at putting the method on a solid theoretical ground will be pre-
sented in [32].
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